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Abstract

Basic relations and analogies between intersection bodies and their
symmetric and nonsymmetric Lp counterparts are established.

1 Introduction

The celebrated Busemann-Petty problem asks the following: if K and L
are origin-symmetric n-dimensional convex bodies such that all (n − 1)-
dimensional volumes of central hyperplane sections of K are less than the
corresponding sections of L, does it follow that the volume of K is less than
the volume of L? It turned out that the answer is affirmative for n ≤ 4
and negative for n > 4 (see, e.g., [5], [8], [41]). Intersection bodies, which
were introduced by Lutwak [25], played a crucial role for the solution of
this problem. These bodies are also fundamental in geometric tomography
(see, e.g., [6]), in affine isoperimetric inequalities (see, e.g., [38]) and the
geometry of Banach spaces (see, e.g., [22], [39]). To give a precise definition
of intersection bodies we introduce some notation.
We write ρ(K,u) := max{r ≥ 0 : ru ∈ K}, u ∈ Sn−1, for the radial function
of a compact subset K in Euclidean n-space Rn which is starshaped with
respect to the origin. If ρ(K, ·) is continuous, such a set K is called star
body. Let Sn denote the set of star bodies in Rn. The intersection body
operator assigns to each K ∈ Sn the star body IK with radial function

ρ(IK,u) = vol(K ∩ u⊥), u ∈ Sn−1,

where vol denotes (n − 1)-dimensional volume and u⊥ is the hyperplane
orthogonal to u.
Ludwig [24] characterized the intersection body operator by its compatibility
with linear maps and its valuation property. She proved that the intersection
body operator is the only nontrivial GL(n) contravariant L1 radial valuation.
This result is part of the dual Brunn-Minkowski theory. The corresponding
characterization within the dual Lp Brunn-Minkowski theory (see, e.g., [4],
[32] for other recent contributions to this theory) was established in [16].
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It turned out, that for Lp radial valuations one has to distinguish between
valuations having centrally symmetric images or not. This phenomenon does
not occur in the L1 situation. The symmetric case of the Lp classification
result showed that the natural definition for (symmetric) Lp intersection
bodies comes from an operator Ip. For 0 < p < 1, the latter maps each
K ∈ Sn to the star body IpK with radial function

ρ(IpK,u)p =
1

Γ(1− p)

∫
K
|x · u|−p dx, u ∈ Sn−1,

where Γ denotes the Gamma function, x · u is the usual inner product of
x, u ∈ Rn, and integration is with respect to Lebesgue measure. Up to nor-
malization, Ip equals the polar L−p centroid body. Centroid bodies were
introduced by Petty in 1961. Lutwak and Zhang [31] extended this concept
to Lq centroid bodies for q > 1. Gardner and Giannopoulos [7] as well
as Yaskin and Yaskina [40] investigated extensions of this notion also for
−1 < q < 1. Lq centroid bodies themselves were studied by many different
authors (see e.g. [2], [3], [16], [20], [23], [26], [29], [31], [33], [40]). Further-
more, they are extremely useful tools in different situations. Among others,
they led Lutwak, Yang and Zhang [30] to information theoretic inequali-
ties, and Paouris [34] used them to prove results concerning concentration
of mass for isotropic convex bodies.
In addition to the characterization mentioned before, there are further in-
dications that Ip can be viewed as the Lp analogue of the intersection body
operator. In the solution of the Lp Busemann-Petty problem in [40] as well
as in [20] where the authors established an Lp analogue of an approximation
result by Goodey and Weil [10] for intersection bodies, it turned out that the
Lp intersection body behaves in the Lp context like the intersection body in
the dual Brunn-Minkowski theory. See also [19] for further results.
In this paper, on the one hand, we further confirm the place of Ip within the
dual Lp Brunn-Minkowski theory. We prove that every intersection body
of a convex body is the limit of Lp intersection bodies with respect to the
usual radial topology on Sn. The Lp analogue of a result of Hensley on in-
tersection bodies will be established. We prove injectivity results along with
their stability versions for Ip which bear a strong resemblance to results for
intersection bodies. Moreover, results for intersection bodies are obtained
as corollaries from our considerations of their Lp analogues.
On the other hand, we investigate the operator I+p . For 0 < p < 1 and
K ∈ Sn, it is defined by

ρ(I+pK,u)
p =

1
Γ(1− p)

∫
K∩u+

|u · x|−pdx, u ∈ Sn−1

where u+ = {x ∈ Rn : u · x ≥ 0}. The relation

IpK = I+pK +̃p I−pK (1)
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with I−pK := I+p (−K), provides a strong connection of these operators to
(symmetric) Lp intersection bodies. (For a precise definition of this addi-
tion we refer to Section 2.) Moreover, I+p essentially spans the set of all
GL(n) contravariant Lp radial valuations on convex polytopes. This is the
nonsymmetric case of the classification result mentioned above. Thus, com-
paring Ludwig’s characterization of the intersection body operator, I+p itself
serves as a candidate for a nonsymmetric Lp analogue of the operator I. We
remark that I+p is closely related to the generalized Minkowski-Funk trans-
form (see, e.g., [37]). The operator I+p is of considerable interest since it is,
as we will see, injective on nonsymmetric bodies. This is in contrast to other
important operators in convex geometry. Most of them, like the intersection
body operator, are injective only on centrally symmetric sets.
Finally, we consider a nonsymmetric version of the Lp Busemann-Petty prob-
lem. In contrast to the original Busemann-Petty problem and its Lp ana-
logue, we obtain a sufficient condition in terms of nonsymmetric Lp inter-
section bodies which allows to compare volumes of nonsymmetric bodies.

2 Notation and Preliminaries

We work in Euclidean n-space Rn and write x ·u for the usual inner product
of two vectors x, u ∈ Rn. The Euclidean unit ball in Rn is denoted by Bn

and we write Sn−1 for its boundary. The volume κn of Bn and the surface
area ωn of Bn are given by

κn =
πn/2

Γ(1 + n/2)
, ωn =

2πn/2

Γ(n/2)
. (2)

By a convex body we mean a nonempty, compact, convex subset of Rn. We
write Kn for the set of convex bodies in Rn and Kn

0 ⊂ Kn for the subset of
convex bodies which contain the origin in their interiors. For 0 < r < R,
we denote by Kn(r,R) the set of convex bodies in Rn which contain an
Euclidean ball of radius r and center at the origin and are contained in an
Euclidean ball with radius R and center at the origin. h(K, ·) : Sn−1 → R
denotes the support function of K ∈ Kn, i.e. h(K,u) := max{u · x |x ∈ K}.
For K ∈ Kn

0 , the polar body K∗ ∈ Kn
0 is defined by

K∗ := {x ∈ Rn |x · y ≤ 1 for every y ∈ K}.

Note that
ρ(K∗, ·) =

1
h(K, ·)

(3)

for every K ∈ Kn
0 . Kn is topologized as usual by the topology induced from

the Hausdorff distance

δ(K,L) = sup
u∈Sn−1

|h(K,u)− h(L, u)| =: ‖h(K, ·)− h(L, ·)‖∞,
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for K,L ∈ Kn. The natural metric on Sn is the radial metric defined by

δ̃(K,L) = ‖ρ(K, ·)− ρ(L, ·)‖∞,

for K,L ∈ Sn. Occasionally, we deal with another metric on Sn which comes
from the L2 norm on the space of continuous functions on the sphere:

δ̃2(K,L) = ‖ρ(K, ·)− ρ(L, ·)‖2.

General references on star and convex bodies are [6] and [38].
In the nineties, Lutwak [28] extended the classical Brunn-Minkowski theory
to the Lp Brunn Minkowski theory. The starting point of his studies was
the Lp mixed volume. For p ≥ 1, let

Vp(K,L) =
1
n

∫
Sn−1

h(L, u)ph(K,u)1−p dS(K,u), (4)

whereK,L ∈ Kn
0 and S(K, ·) denotes the surface area measure ofK. Lutwak

proved in [28] that

Vp(K,L) =
p

n
lim

ε→0+

V (K +p ε
1/pL)− V (K)
ε

, (5)

where h(K +p L, ·)p := h(K, ·)p + h(L, ·)p defines Lp Minkowski addition.
The corresponding notion within the dual Lp Brunn-Minkowski theory is
the following. Denote by Sn

0 the set of star bodies containing the origin in
their interiors. For K,L ∈ Sn

0 and arbitrary p ∈ R we define

Ṽp(K,L) :=
1
n

∫
Sn−1

ρ(L, u)pρ(K,u)n−p du.

For 0 < p < n, this definition extends to all elements of Sn. As before, this
quantity follows from merging volume with a certain addition, namely radial
Lp addition. For p 6= 0, the latter assigns to two star bodies K,L ∈ Sn

0 and
positive reals α, β the star body α ·K +̃p β · L with radial function

ρ(α ·K +̃p β · L, ·)p = αρ(K, ·)p + βρ(L, ·)p.

For positive p, this definition extends to all elements of Sn.By the polar
formula for volume we get

Ṽp(K,L) =
p

n
lim

ε→0+

V (K +̃p ε · L)− V (K)
ε

, (6)

for two star bodies K,L ∈ Sn
0 . For 0 < p < 1, Hölder’s inequality and the

polar formula for volume gives the dual Ln−p Minkowski and the dual Lp

Minkowski inequality

Ṽn−p(K,L)n ≤ V (K)pV (L)n−p, (7)

Ṽp(K,L)n ≤ V (K)n−pV (L)p. (8)
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If K,L 6= {0}, equality holds in (7) or (8) if and only if K and L are dilates.
The polar formula for volume of star bodies together with the linearity
properties of dual mixed volumes give

V (K +̃n−p L) = Ṽn−p(K +̃n−p L,K +̃n−p L)

= Ṽn−p(K +̃n−p L,K) + Ṽn−p(K +̃n−p L,L).

Thus (7) yields the dual Lp Kneser-Süss inequality

V (K +̃n−p L)(n−p)/n ≤ V (K)(n−p)/n + V (L)(n−p)/n. (9)

Equality holds for star bodies K,L ∈ Sn, K,L 6= {0}, if and only if they are
dilates.
For p < 1, p 6= 0, and functions f ∈ C(Sn−1), the L−p cosine transform is
defined by

C−pf(v) =
∫

Sn−1

|u · v|−pf(u) du, v ∈ Sn−1.

We further introduce the nonsymmetric L−p cosine transform

C+
−pf(v) =

∫
Sn−1∩v+

|u · v|−pf(u) du, v ∈ Sn−1.

Note that a change into polar coordinates proves

ρ(IpK, v)p = ((n− p)Γ(1− p))−1C−pρ(K, ·)n−p(v), (10)
ρ(I+pK, v)

p = ((n− p)Γ(1− p))−1C+
−pρ(K, ·)n−p(v), (11)

for every v ∈ Sn−1. This enables us to show that Ip and I+p map Bn to balls
of radii rIp and rI+p , respectively. Indeed, relation (11) yields

ρ(I+pB
n, v)p =

ωn−1

(n− p)Γ(1− p)

∫ 1

0
t−p(1− t2)(n−3)/2 dt

=
ωn−1Γ((1− p)/2)Γ((n− 1)/2)
2(n− p)Γ(1− p)Γ((n− p)/2)

.

So by (2) and the formula

Γ(2x) =
22x−1

√
π

Γ(x)Γ
(
x+

1
2

)
, (12)

which holds for complex numbers x and x+ 1
2 that do not belong to −N∪{0},

we obtain

rp

I+p
=

2pπn/2

(n− p)Γ((n− p)/2)Γ(1− p/2)
(13)

for p < 1. Obviously, rp
Ip

= 2rp

I+p
.
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3 Relations between Intersection Bodies and their
Lp Analogues

Our first theorem clarifies the behavior of the Lp intersection body of a
convex body K as p tends to one.

Theorem 1. For every K ∈ Kn
0 , we have

δ̃(I±p K, IK) → 0 and δ̃(IpK, 2IK) → 0,

for p↗ 1.

(Compare [22, page 9] and [7, Proposition 3.1].) In [16] it was shown that
the operators I+p and I−p essentially span the set of nontrivial GL(n) covariant
Lp radial valuations on convex polytopes for 0 < p < 1. But the intersection
body operator I is the only nontrivial L1 radial valuation (see [24]). So in
some sense Theorem 1 explains the surprising fact that the set of Lp radial
valuations is two-parametric for 0 < p < 1 and only one-parametric for
p = 1.
Before we start to prove this approximation result, we remark that the radial
function of I+p can be given in terms of fractional derivatives. Suppose h is a
continuous, integrable function on R that is m-times continuously differen-
tiable in some neighborhood of zero. For −1 < q < m, q 6= 0, 1, . . . ,m − 1,
the fractional derivative of order q of the function h at zero is defined as

h(q)(0) =
1

Γ(−q)

∫ 1

0
t−1−q

(
h(t)− h(0)− · · · − h(m−1)(0)

tm−1

(m− 1)!

)
dt

+
1

Γ(−q)

∫ ∞

1
t−1−qh(t) dt+

1
Γ(−q)

m−1∑
k=0

h(k)(0)
k!(k − q)

.

For a non-negative integer k < m we have

lim
q→k

h(q)(0) = (−1)k d
k

dtk
h(t)|t=0. (14)

For 0 < p < 1 and K ∈ Kn
0 Fubini’s theorem gives

ρ(I+pK, v)
p =

1
Γ(1− p)

∫ ∞

0
t−pAK,v(t) dt = A

(p−1)
K,v (0), (15)

where AK,v(t) := vol(K ∩ {x ∈ Rn : x · v = t}) denotes the parallel section
function of K in direction v ∈ Sn−1. For details on fractional derivatives we
refer to [22, Section 2.6].

Proof. Suppose 0 < p < 1. First, we prove the pointwise convergence

ρ(I+p K,u) → ρ(IK,u), u ∈ Sn−1, (16)
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as p tends to one (compare [22, page 9], [7, Proposition 3.1]). We can ap-
proximate K ∈ Kn

0 with respect to the Hausdorff metric by bodies belonging
to Kn

0 which have infinitely smooth support functions (see, e.g., [38, Theo-
rem 3.3.1]). By (3), this yields an approximation of K with respect to the
radial metric by convex bodies with infinitely smooth radial functions. Note
that by (13) and the representation of the radial function of I as spherical
Radon transform (see [25, formula 8.5]) we obtain for K1,K2 ∈ Kn(r,R)
with R > 1, p > 1/2

|ρ(I+pK1, u)− ρ(I+pK2, u)| ≤ c1(n)R2nδ̃(K1,K2),

|ρ(IK1, u)− ρ(IK2, u)| ≤ c2(n)Rn−2δ̃(K1,K2),

where c1(n), c2(n) are constants depending on n only. So in order to derive
(16), we can restrict ourselves to bodies K ∈ Kn

0 with sufficiently smooth
radial functions. For such bodies, AK,u is continuously differentiable in a
neighbourhood of 0 (cf. [22, Lemma 2.4]). Thus (14) and (15) prove (16).
For k ∈ N, let 0 < pk < 1 be an increasing sequence which converges to one.
Define functions

f1
k (u) := ρ(I+pk

K,u)−1

(
Γ(1 + n)V (K ∩ u+)

Γ(1− pk + n)

)1/pk

,

f2
k (u) :=

(
Γ(1− pk + n)

Γ(1 + n)

)1/pk

,

f3
k (u) := V (K ∩ u+)−1/pk ,

on Sn−1. We need the following result: For a compact convex set K with
nonempty interior and a concave function f : K → R+, the function

F (q) :=
(

1
nB(q + 1, n)V (K)

∫
K
f(x)q dx

) 1
q

,

where B denotes the beta function, is decreasing on (−1, 0) (see [9] and the
references there). Thus the sequence f1

k is increasing.
Since o is an interior point of K, there exists a constant c > 0 such that
cV (K ∩ u+) ≥ 1 for every u ∈ Sn−1. Thus c−1/pkf3

k is increasing, too. So
f1

k and c−1/pkf3
k are monotone sequences of continuous functions converging

pointwise to continuous functions on a compact set. Therefore they converge
uniformly by Dini’s theorem. Thus

ρ(I+pk
K,u)−1 = f1

kf
2
kf

3
k (u) → ρ(IK,u)−1

uniformly for k →∞.
The other assertions of the theorem immediately follow from the definition
I−p K = I+p (−K) and relation (1).
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Next, we prove an inequality between radial functions of intersection bodies
and their Lp analogues.

Theorem 2. Suppose 0 < p < 1. For all symmetric K ∈ Kn
0 with volume

one there exist positive constants c1, c2 independent of the dimension n, the
body K and p, such that

c1ρ(IK,u) ≤ ρ(IpK,u) ≤ c2ρ(IK,u)

holds for every direction u ∈ Sn−1.

Proof. We use techniques of Milman and Pajor [33]. The following two facts
can also be found in this paper. For a measurable function f : Rn → R+

which has values less than or equal 1 and a symmetric convex body Q ∈ Kn
0 ,

the function

F1(q) :=

(∫
Rn ρ(Q, x)−qf(x) dx∫

Q ρ(Q, x)
−q dx

)1/(n+q)

is increasing on (−n,∞).
Suppose ψ : R+ → R+ satisfies ψ(0) = 0, ψ and ψ(x)/x are increasing on
an interval (0, ν], and ψ(x) = ψ(ν) for x ≥ ν. Let h : R+ → R+ be a
decreasing, continuous function which vanishes at ψ(ν). Then

F2(q) :=
(∫∞

0 h(ψ(x))xq dx∫∞
0 h(x)xq dx

)1/(1+q)

is a decreasing function on (−1,∞) (provided that the integrals make sense).
To prove the second inequality take f(x) := AK,u(x)/AK,u(0) and Q :=
[−1, 1] ⊂ R. Brunn’s theorem shows that this f satisfies the above assump-
tions to ensure that F1(−p) ≤ F1(0), that is(

(1− p)
∫

R |x|
−pAK,u(x) dx

2vol(K ∩ u⊥)

)1/(1−p)

≤ 1
2vol(K ∩ u⊥)

.

Thus by (15)

ρ(IpK,u) ≤
2

(Γ(2− p))1/p
ρ(IK,u).

We have limp→0+(Γ(2− p))1/p = exp(γ − 1) > 0 where γ denotes the Euler-
Mascheroni constant. For all other values of p ∈ (0, 1] we trivially have that
Γ(2− p))1/p > 0. This shows that Γ(2− p))1/p can be bounded from below
on (0, 1) by a positive constant smaller than one.
To establish the first inequality take h(x) = (1 − x)n−1I[0,1](x), x ≥ 0 and
ψ(x) = 1 − (AK,u(x)/AK,u(0))1/(n−1) for arbitrary u ∈ Sn−1. (I stands for
the indicator function.) Brunn’s theorem shows that ψ is a convex function
on [0, h(K,u)]. Therefore these two functions satisfy the above conditions
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to guarantee the monotonicity of F2. Hence F2(−p) ≥ F2(0), which can be
rewritten as( ∫∞

0 AK,u(x)x−p dx

vol(K ∩ u⊥)B(1− p, n)

)1/(1−p)

≥ n

2vol(K ∩ u⊥)
.

Using (15), we obtain

ρ(IpK,u) ≥ 2
(

Γ(n)n1−p

Γ(1 + n− p)

)1/p

ρ(IK,u).

We want to show that
Γ(n)n1−p

Γ(1 + n− p)
≥ 1

for every n ∈ N and p ∈ (0, 1). So we have to prove that

ln Γ(n+ 1− p) + p lnn ≤ ln Γ(n+ 1). (17)

Since the Gamma function is logarithmic convex we get

ln Γ(n+ 1− p) = lnΓ((1− p)(n+ 1) + pn)
≤ (1− p) ln Γ(n+ 1) + p ln Γ(n)
= (1− p) lnn+ lnΓ(n).

This immediately implies (17).

Now, we give applications of Theorem 2. A compact set K ⊂ Rn with
volume 1 is said to be in isotropic position if for each unit vector u∫

K
(x · u)2 = L2

K .

LK is called isotropic constant of K. Let K ∈ Kn
0 be symmetric and in

isotropic position. Hensley [17] proved the existence of absolute (not de-
pending on K and n) constants c1, c2 such that

c1 ≤
ρ(IK,u)
ρ(IK, v)

≤ c2, ∀u, v ∈ Sn−1.

In fact, even more is true, namely

c̃1
LK

≤ ρ(IK,u) ≤ c̃2
LK

(18)

for all unit vectors u and universal constants c̃1, c̃2.
Hensley’s original relation combined with Theorem 2 gives the Lp analogue
of Hensley’s result.
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Theorem 3. Assume 0 < p < 1. For symmetric bodies K ∈ Kn
0 in isotropic

position there exist constants c1, c2 independent of the dimension n, the body
K and p, such that

c1 ≤
ρ(IpK,u)
ρ(IpK, v)

≤ c2

for all u, v ∈ Sn−1.

One of the major open problems in the field of convexity is the slicing con-
jecture. It asks whether LK for centrally symmetric convex bodies K in
isotropic position can be bounded from above by a universal constant. Rela-
tion (18) shows that this is equivalent to bound ‖ρ(IK, ·)−1‖∞ by a constant
independent of the dimension and the body K. By Theorem 2, the slicing
conjecture is equivalent to ask whether there exists a constant c independent
of the dimension and the body K such that

‖ρ(IpK, ·)−1‖∞ ≤ c

for all symmetric K ⊂ Kn in isotropic position and some p ∈ (0, 1).

4 An Lp Ellipsoid Formula

Busemann showed that the volume of a centered ellipsoid E ⊂ Rn can essen-
tially be obtained by averaging over certain powers of (n − 1)-dimensional
volumes of its hyperplane sections. To be precise,

V (E)n−1 =
κn−2

n

nκn
n−1

∫
Sn−1

vol(E ∩ u⊥)n du. (19)

This formula is the hyperplane case of a more general version due to Fursten-
berg and Tzkoni (cf. [6, Corollary 9.4.7]). Guggenheimer [15] established a
companion of (19) which involves the surface area of E, S(E):

V (E)n−1S(E) =
κn−1

n

κn+1
n−1

∫
Sn−1

vol(E ∩ u⊥)n+1 du. (20)

Lutwak [27] obtained a more general ellipsoid formula which contains (19)
and (20) as special cases:

κn−2
n

κn
n−1

∫
Sn−1

vol(E ∩ u⊥)n+1

vol(F ∩ u⊥)
du =

V (E)n−1

V (F )

∫
Sn−1

h(F, u) dS(E, u),

where E,F ⊂ Rn are centered ellipsoids. For E = Bn, this result establishes
a formula similar to (20) involving the mean width of E.
We extend this formula using Lp intersection bodies. From our equation
one can obtain the formulas of Busemann, Guggenheimer, and Lutwak by
taking the limit p↗ 1.
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Theorem 4. For 0 < p < 1 and two centered ellipsoids E and F we have

Ṽp−2(I+pE, I
+
pF ) = rn

I+p
κ2−n/p

n V (E)(n−3p+2)/pV (F )(p−2)/pV2−p(E,F ). (21)

Proof. We denote by Ē, F̄ the ellipsoids which are dilates of E, F with
volume κn. Thus

Ē = λE and F̄ = µF

where
λ := (κn/V (E))1/n and µ := (κn/V (F ))1/n.

We write φĒ for the linear transformation which maps the unit ball Bn to Ē.
So φĒ has determinant ±1. The main tool in the proof will be the equation

Ṽp−2(Ē∗, F̄ ∗) = V2−p(Ē, F̄ ). (22)

From (5) and (6) we get for φ ∈ SL(n) that

Ṽp−2(φK, φL) = Ṽp−2(K,L), V2−p(φK, φL) = V2−p(K,L).

Identity (4) shows

V2−p(K,L) =
1
n

∫
Sn−1

h(L, u)2−ph(K,u)p−1 dS(K,u).

Hence
V2−p(Bn, L) = Ṽp−2(Bn, L

∗).

These preparations enable us to derive (22) by

Ṽp−2(Ē∗, F̄ ∗) = Ṽp−2((φĒBn)∗, F̄ ∗) = Ṽp−2(φ−t
Ē
Bn, F̄

∗) = Ṽp−2(Bn, φ
t
ĒF̄

∗)

= V2−p(Bn, (φt
ĒF̄

∗)∗) = V2−p(Bn, φ
−1
Ē
F̄ ) = V2−p(φĒBn, F̄ )

= V2−p(Ē, F̄ ).

We use obvious homogeneity properties of Ṽp−2 and V2−p, which follow from
their integral representations, for extending (22) to our ellipsoids E and F .
Indeed,

Ṽp−2(E∗, F ∗) = Ṽp−2((λ−1Ē)∗, (µ−1F̄ )∗) = Ṽp−2(λĒ∗, µF̄ ∗)

= λn+2−pµp−2Ṽp−2(Ē∗, F̄ ∗) = λn+2−pµp−2V2−p(Ē, F̄ )
= λ2nV2−p(E,F ). (23)

As was shown in Section 2, I+p maps the unit ball Bn to the ball rI+p B
n.

Since I+pφK = φ−tI+pK for φ ∈ SL(n), we have

I+pE = I+pλ
−1Ē = λ1−n/pI+p Ē = λ1−n/pI+pφĒBn

= λ1−n/prI+p φ
−t
Ē
Bn = λ1−n/prI+p Ē

∗

= λ−n/prI+p E
∗.
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We obtain

Ṽp−2(I+pE, I
+
pF ) = rn

I+p
λ−n/p(n+2−p)µ−n/p(p−2)Ṽp−2(E∗, F ∗)

= rn
I+p
λ−n/p(n+2−p)+2nµ−n/p(p−2)V2−p(E,F ).

Substituting the values of λ and µ finishes the proof.

An application of Theorem 1 to (21) for the special choice E = F proves
Busemann’s formula (19). Guggenheimer’s relation (20) is the limiting case
p↗ 1 for F = Bn of (21). Taking the limit p↗ 1 in (21) without further as-
sumptions on the involved ellipsoids yields Lutwak’s formula for intersection
bodies.

5 Injectivity Results

We start by collecting some basic facts about spherical harmonics. All of
them can be found in [13].
Let {Ykj : j = 1, . . . , N(n, k)} be an orthonormal basis of the real vector
space of spherical harmonics of order k ∈ N ∪ {0} and dimension n. We
write

f ∼
∞∑

k=0

Yk (24)

for the condensed harmonic expansion of a function f ∈ L2(Sn−1), where

Yk =
N(n,k)∑

j=1

(f, Ykj)Ykj .

Here, (f, g) stands for the usual scalar product
∫
Sn−1 f(u)g(u) du on L2(Sn−1).

The norm induced by this scalar product is denoted by ‖ . ‖2. For a bounded
integrable function Φ : [−1, 1] → R we define a transformation TΦ on
C(Sn−1) by

(TΦf)(v) :=
∫

Sn−1

Φ(u · v)f(u) du, v ∈ Sn−1.

If Yk is a spherical harmonic of degree k, then the Funk-Hecke Theorem
states that

TΦYk = an,k(TΦ)Yk (25)

with

an,k(TΦ) = ωn−1

∫ 1

−1
Φ(t)Pn

k (t)(1− t2)(n−3)/2 dt, (26)

12



where Pn
k is the Legendre polynomial of dimension n and degree k. If (24)

holds, then

TΦf ∼
∞∑

k=0

an,k(TΦ)Yk. (27)

This remains true for arbitrary Φ provided the induced transformation TΦ

maps continuous functions to continuous functions, satisfies (TΦf, g) =
(f,TΦg) for all f, g ∈ C(Sn−1) as well as (25). So (27) and Parseval’s
equality show that such transformations TΦ are injective on C(Sn−1) if all
multipliers an,k(TΦ) are not equal to zero.
If m ≥ 0, ∆m

o stands for the m-times iterated Beltrami operator. For a func-
tion f : Sn−1 → R for which (24) holds and ∆m

o f exists and is continuous,
we have

∆m
o f ∼ (−1)m

∞∑
k=0

km(k + n− 2)mYk. (28)

We will deal with smooth functions on the sphere and their development
into series of spherical harmonics. For this purpose, we need information
on the behavior of derivatives of spherical harmonics. For an n-dimensional
spherical harmonic Yk of order k and all u ∈ Sn−1

|(DαYk(x/‖x‖))x=u| ≤ cn,|α|k
n/2+|α|−1‖Yk‖2, (29)

where α = (α1, . . . , αn), Dα = ∂|α|/(∂x1)α1 . . . (∂xn)αn and |α| = α1 + . . .+
αn. Define

cn,k,p =
πn/2−1Γ(1− p)Γ((k + p)/2)

2−pΓ((n+ k − p)/2)
. (30)

Lemma 1. Assume p < 1 and that p is not an integer. Then the multipliers
of C+

−p and C−p are

an,k(C+
−p) =

 (−1)k/2+1cn,k,p cos
(
π 1+p

2

)
k even,

(−1)(k−1)/2cn,k,p sin
(
π 1+p

2

)
k odd,

and

an,k(C−p) =

{
(−1)k/2+12cn,k,p cos

(
π 1+p

2

)
k even,

0 k odd.

The multipliers an,k(C−p) appeared in their full generality already in [21]
and [36]. In our situation they are an obvious consequence of the formula for
an,k(C+

−p). In dimensions three and higher, Rubin [37] calculated an,k(C+
−p).

We present another proof and establish the representation of the multipliers
also in dimension two.

13



Proof. First, we assume that n = 2. Then the relation

P 2
k (t) = cos(k arccos t), k ∈ N ∪ {0}.

holds for t ∈ [−1, 1]. Therefore we obtain

a2,k(C+
−p) = 2

∫ 1

0
t−p(1− t2)−1/2 cos(k arccos t) dt

= 2
∫ π/2

0
cos−p t cos kt dt

=
πΓ(1− p)

2−pΓ((2− p+ k)/2)Γ((2− p− k)/2)
,

where the last equality follows from [35, vol. 1, 2.5.11, formula 22]. If x ∈ C
is not a real integer, then Euler’s reflection formula states

Γ(x)Γ(1− x) =
π

sinπx
.

Thus
π

Γ((2− p− k)/2)
= Γ((p+ k)/2) sin(π(p+ k)/2),

which finally gives

a2,k(C+
−p) =

Γ(1− p) sin(π(k + p)/2)Γ((k + p)/2)
2−pΓ((2 + k − p)/2)

.

An application of a standard addition theorem to the involved sine proves
the first part of the lemma in dimension two.
Now, let n ≥ 3. Then we can use the following connection between Legendre
polynomials Pn

k and Gegenbauer polynomials C(n−2)/2
k :

Pn
k (t) =

(
k + n− 3
n− 3

)−1

C
(n−2)/2
k (t). (31)

Assume further that k = 2m+1, m ∈ N∪{0}. Combining (31) and (26) we
obtain

an,k(C+
−p) = ωn−1

(
k + n− 3
n− 3

)−1 ∫ 1

0
t−p(1− t2)(n−3)/2C

(n−2)/2
k (t) dt.

The odd part of [35, vol. 2, 2.21.2, formula 5] yields the following expression
for the integral above:

(−1)m22m

(2m+ 1)!

(
n− 2

2

)
m+1

(
1 + p

2

)
m

B

(
n− 1

2
+m,

2− p

2

)
,
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where (a)l denotes the Pochhammer symbol. Rewriting this in terms of
Gamma functions gives

an,k(C+
−p) =

2π(n−1)/2

Γ((n− 1)/2)

(
k + n− 3
n− 3

)−1 (−1)(k−1)/22k−1

k!
Γ((n+ k − 1)/2)

Γ((n− 2)/2)
Γ((p+ k)/2)
Γ((1 + p)/2)

Γ((n− 2 + k)/2)Γ((2− p)/2)
Γ((n+ k − p)/2)

.

(32)

Formula (12) yields

Γ
(
n− 2 + k

2

)
Γ
(
n− 1 + k

2

)
=

Γ(n− 2 + k)
√
π

2n−3+k
,

Γ
(
n− 2

2

)
Γ
(
n− 1

2

)
=

Γ(n− 2)
√
π

2n−3
.

Substituting this in relation (32) one obtains

an,k(C+
−p) =

π(n−1)/2(−1)(k−1)/2Γ((k + p)/2)Γ((2− p)/2)
Γ((1 + p)/2)Γ((n+ k − p)/2)

.

Since

Γ
(

1 + p

2

)
=

π

Γ((1− p)/2) sin(π(1 + p)/2)
,

Γ
(

1− p

2

)
Γ
(

2− p

2

)
=

√
πΓ(1− p)

2−p
,

we obtain the desired representation of an,k(C+
−p) in the odd case.

If k is even, one can proceed in a similar way by using the even case of [35,
vol. 2, formula 2.21.2, 5]. The computation of the multipliers of C−p is an
easy consequence of the results above since Legendre polynomials of even
degree are even and of odd degree are odd.

An immediate consequence of Lemma 1 and the remarks before it is

Theorem 5. If p < 1 is not an integer, then the transformations C+
−p :

C(Sn−1) → C(Sn−1) and C−p : Ce(Sn−1) → Ce(Sn−1) are injective.

(Ce(Sn−1) stands for continuous, even functions on the sphere.) The repre-
sentations of the multipliers an,k(C+

−p) and an,k(C−p) obtained in Lemma 1
allow us to extend them to all p ∈ R\Z.
For 0 < p < 1, there exist constants c1, c2 by Stirling’s formula which
depend only on n such that for sufficiently large k

|an,k(C+
−p)

−1| ≤

 c1

∣∣∣cos
(
π 1+p

2

)∣∣∣−1
Γ(1− p)−1kβ k even,

c2

∣∣∣sin(π 1+p
2

)∣∣∣−1
Γ(1− p)−1kβ k odd,

(33)
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where β = n/2− p.
For f ∈ C∞(Sn−1) which satisfies (24) we set for arbitrary p ∈ R\Z

C+
−pf(u) :=

∞∑
k=0

an,k(C+
−p)Yk(u), for u ∈ Sn−1. (34)

From (28), (29), and the behavior of |an,k(C+
−p)| as k becomes large, it fol-

lows that C+
−p(f) is infinitely smooth.

Let C∞e (Sn−1) and C∞o (Sn−1) denote the subspaces of even and odd in-
finitely smooth functions on the sphere, respectively. Denote by πe, πo

the projections which assign to each f ∈ C∞(Sn−1) its even part (f(u) +
f(−u))/2 and odd part (f(u)− f(−u))/2, respectively. Define

c−1
e := 2nπn−2Γ(1− p)Γ(1− n+ p) cos(π(1 + p)/2) cos(π(1 + n− p)/2),
c−1
o := 2nπn−2Γ(1− p)Γ(1− n+ p) sin(π(1 + p)/2) sin(π(1 + n− p)/2).

The terms which involve gamma functions with a dependence on k and p
in the representations of the multipliers an,k(C+

−p) reverse if one replaces p
by n− p. (This observation was used by Koldobsky [21] for the affirmative
part of the solution of the Busemann-Petty problem.) Therefore we obtain
the following

Theorem 6. If p is not an integer, the transformation C+
p is a bijection of

C∞(Sn−1). Moreover, the inversion formula

(C+
−p)

−1 = C+
p−n ◦ (ceπe + coπo)

holds.

For n ≥ 3 this was shown by Rubin [37] and the inversion formula for C−p

can be found in [36].
Now, we return to geometry. The geometric reformulation of Theorem 5 is
as follows.

Theorem 7. For 0 < p < 1, the operators I±p : Sn → Sn and Ip : Sn
e → Sn

e

are injective.

(Sn
e denotes the set of symmetric star bodies in Rn.) We point out that the

nonsymmetric Lp intersection body operator I+p determines also nonsymmet-
ric star bodies uniquely. This is in contrast to its classical analogue which
is injective only on centrally symmetric sets. Note that results by Groemer
[14] and Goodey and Weil [11] ensure that certain sections determine also a
nonsymmetric body uniquely. But in the Lp theory, the nonsymmetric Lp

intersection body operator is itself injective on all star bodies.
A stability version of Theorem 7 is as follows.

16



Theorem 8. Suppose 0 < p < 1. For γ ∈ (0, 1/(1+β)) and K,L ∈ Kn(r,R)
there is a constant c1 depending only on r,R, p, n, γ such that

δ(K,L) ≤ c1δ̃(I+p K, I
+
p L)2γ/(n+1).

If in addition K and L are symmetric, then

δ(K,L) ≤ c2δ̃(IpK, IpL)2γ/(n+1),

where c2 is again a constant depending just on r,R, p, n, γ.

The proof of this result follows the approach suggested by Bourgain and
Lindenstrauss [1] which was also used by Hug and Schneider [18] to establish
stability results involving transformations TΦ for bounded Φ.

Proof. In the proof we denote by d1, d2, . . . constants which depend on
r,R, p, γ and n. We write c1, c2, . . . for constants depending on r,R, n only.
The ball B(0, r) is contained in K,L, hence

δ̃2(K,L) ≤ ((n− p)rn−p−1)−1‖ρ(K, ·)n−p − ρ(L, ·)n−p‖2.

Groemer [12] proved that

δ(K,L) ≤ 2
(

8κn−1

n(n+ 1)

)−1/(n+1)

R2r−(n+3)/(n+1)δ̃2(K,L)2/(n+1).

Therefore

δ(K,L) ≤ c1((n− p)rn−p−1)−2/(n+1)‖ρ(K, ·)n−p − ρ(L, ·)n−p‖2/(n+1)
2 . (35)

The operator I+p maps balls to balls by (13). Since I+p B(0, r) ⊂ I+p K, I
+
p L,

we get

‖ρ(I+p K, ·)p − ρ(I+p L, ·)p‖2 ≤ p(rn/p−1rI+p )p−1δ̃2(I+p K, I
+
p L).

Together with the trivial estimate δ̃2(I+p K, I
+
p L) ≤ √

ωnδ̃(I+p K, I
+
p L) we de-

duce that

‖ρ(I+p K, ·)p − ρ(I+p L, ·)p‖2 ≤ c2(rn/p−1rI+p )p−1δ̃(I+p K, I
+
p L). (36)

So by (35) and (36) it is enough to prove

‖ρ(K, ·)n−p − ρ(L, ·)n−p‖2 ≤ d7‖ρ(I+p K, ·)p − ρ(I+p L, ·)p‖γ
2 ,

for some constant d7. For simplicity we write f := ρ(K, ·)n−p − ρ(L, ·)n−p

and f̄ := 1/Γ(1− p)f .
Relation (3) and the estimate

|h(K1, u)− h(K2, v)| ≤ R̄‖u− v‖+ max{‖u‖, ‖v‖}δ(K,L)
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for arbitrary vectors u, v and convex bodies K1,K2 contained in B(0, R̄) (cf.
[38, Lemma 1.8.10]) proves that f is a Lipschitz function on Sn−1 with a
Lipschitz constant Λ(f) which is at most 2(n− p)Rn−p+1r−1.
Assume (24) holds for f . Since f ∈ C(Sn−1), the Poisson transform fτ

satisfies

fτ (u) :=
1
ωn

∫
Sn−1

1− τ2

(1 + τ2 − 2τ(u · v))n/2
f(v) dv =

∞∑
k=0

τkYk(u),

for u ∈ Sn−1 and 0 < τ < 1 (cf. [13, Theorem 3.4.16]).
Since (−β/(e ln τ))β is the maximal value of the function x → xβτx, x > 0,
we have

kβτk(1− τ)β ≤
(

β

−e ln τ

)β

(1− τ)β =
(
β

e

)β ( 1− τ

− ln τ

)β

≤
(
β

e

)β

, (37)

for k ∈ N ∪ {0}. From (33) we derive the existence of a constant c3 and a
positive integer N depending on n only such that

k−β ≤ c3 max

{∣∣∣∣cos
(
π

1 + p

2

)∣∣∣∣−1

,

∣∣∣∣sin(π1 + p

2

)∣∣∣∣−1
}
·

·Γ(1− p)−1|an,k(C+
−p)|

=: c3α(p)|an,k(C+
−p)|

for k ≥ N . Define

d1 = max
{

max
0≤k<N

{τk(β/e)−β(1− τ)βα(p)−1|an,k(C+
−p)|−1}, c3

}
.

Thus by (37)

τk ≤ d1(β/e)βα(p)(1− τ)−β|an,k(C+
−p)| =: d2(1− τ)−β|an,k(C+

−p)|

for k ∈ N ∪ {0}. Combining this with Parseval’s equation and (27) gives

‖fτ‖2
2 =

∞∑
k=0

τ2k‖Yk‖2
2 ≤ d2

2(1− τ)−2β
∞∑

k=0

|an,k(C+
−p)|2‖Yk‖2

2

= d2
2(1− τ)−2β‖C+

−pf‖2
2 = d2

3(1− τ)−2β‖C+
−pf̄‖2

2 (38)

where d3 := Γ(1− p)d2. The Cauchy-Schwarz inequality, the estimate ‖f −
fτ‖∞ ≤ c4Λ(f)(1 − τ) ln(2/(1 − τ)) for τ ∈ [1/4, 1) (cf. [13, Lemma 5.5.8])
and (38) yield

‖f‖2
2 ≤ |(f, f − fτ )|+ |(f, fτ )| ≤

∫
|f(u)| du‖f − fτ‖∞ + ‖f‖2‖fτ‖2

≤ (
√
ωn‖f − fτ‖∞ + ‖fτ‖2)‖f‖2

≤
(
c5r

−1Rn−p+1(1− τ) ln
2

1− τ
+ d3(1− τ)−β‖C+

−pf̄‖2

)
‖f‖2.

(39)
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By (13), the quotient ‖C+
p f̄‖2/R

n−p can be bounded from above by c6r
p

I+p
.

If we set

d4 := c6
(4/3)1+β

ln(8/3)
rp

I+p
,

then

d4(1− τ)1+β ln
2

1− τ
=
‖C+

−pf̄‖2

Rn−p

for a certain value τ ∈ [1/4, 1) if ‖C+
−pf̄‖2 > 0. So finally for this τ and

every γ ∈ (0, 1/(1 + β)) we have by (39)

‖f‖2 ≤
(
c5r

−1(n− p)Rn−p+1d−1
4 Rp−n + d3

)
‖C+

−pf̄‖2(1− τ)−β

=: d5‖C+
−pf̄‖2(1− τ)−β

≤ R(n−p)(1−γ)d5d
1−γ
4 (1− τ)1−γ(1+β)

(
ln

2
1− τ

)1−γ

‖C+
−pf̄‖

γ
2

≤ R(n−p)(1−γ)d5d
1−γ
4 max{(3/4)1−γ(1+β)(ln(8/3))1−γ ,

21−γ(1+β)((1− γ)/(e(1− γ(1 + β))))1−γ}‖C+
−pf̄‖

γ
2

≤ d5d
1−γ
4 d6‖C+

−pf̄‖
γ
2 .

In conclusion we obtain

δ(K,L) ≤ c7((n− p)rn−p−1)−2/(n+1)(d5d
1−γ
4 d6)2/(n+1) ·

·
(
c2p(rn/p−1rI+p )p−1

)γ/(n+1)
δ̃(I+p K, I

+
p L)2γ/(n+1).

This settles the first part of the theorem. The proof of the second part follows
the same lines noting that f is now an even function and therefore the odd
coefficients in the condensed harmonic expansion of f vanish.

Another application of Theorem 1 is the proof of a stability theorem for
intersection bodies (compare Groemer’s work [12]).

Corollary. For γ ∈ (0, 2/n) and centrally symmetric K,L ∈ Kn(r,R) there
is a constant c depending only on r,R, n, γ such that for

δ(K,L) ≤ cδ̃(IK, IL)2γ/(n+1).

Proof. Choose γp = 2/(n − 2p + 2) + γ − 2/n. Then the second part of
Theorem 8 gives

δ(K,L) ≤ c2(δ̃(IpK, 2IK) + δ̃(2IK, 2IL) + δ̃(2IL, IpL))2γp/(n+1).

The sine-term in the definition of α(p) is not involved within the centrally
symmetric case. Therefore the constant c2 converges as p tends to one as
one can see from the definitions of constants di.
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The next two results particularly show the announced analogy between inter-
section bodies and their Lp analogues. A star body is called Lp intersection
body if it is contained in IpSn.

Theorem 9. Suppose 0 < p < 1 and let S ∈ Sn be an Lp intersection body.
Then there exists a unique centered star body Sc with IpSc = S. Moreover,
this star body is characterized by having smaller volume than any other star
body in the preimage I−1

p S.

For intersection bodies, the corresponding result was proved by Lutwak [25,
Theorem 8.8]. To construct the desired body of the last theorem we need
the following definition. For each star body K ∈ Sn we define a symmetric
star body by

∇̃pK :=
1
2
·K +̃n−p

1
2
· (−K).

Proof. Let S̄ ∈ Sn be chosen such that IpS̄ = S. The star body

Sc := ∇̃pS̄

is centrally symmetric. Representation (10) immediately shows that IpSc =
S. But Ip is injective on centrally symmetric sets which proves the first part
of the theorem.
Since (1/2) ·K = (1/2)1/(n−p)K, we obtain from (9) that

V (∇̃pK) ≤ V (K) (40)

with equality if and only if K is centered. If K is an arbitrary star body
which is mapped to S by Ip, then ∇̃pK = ∇̃pS̄. So

V (∇̃pS̄) = V (∇̃pK) ≤ V (K)

with equality if and only if K is centered by (40). This establishes the second
part of the theorem.

Theorem 10. For given star bodies K,L ∈ Sn and 0 < p < 1, the following
statements are equivalent:

IpK = IpL, (41)
∇̃pK = ∇̃pL, (42)

Ṽp(K,M) = Ṽp(L,M), for each centered star body M ∈ Sn. (43)

Formally setting p = 1 and I1 = I, the corresponding equivalence (41) ⇔
(43) was established in [25] and (41) ⇔ (42) can be found in [6].
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Proof. First, since IpK = Ip∇̃pK as well as IpL = Ip∇̃pL and Ip is injec-
tive on centrally symmetric star bodies, (41) implies (42). Conversely, the
identity ∇̃pK = ∇̃pL means

1
2
ρ(K, v)n−p +

1
2
ρ(−K, v)n−p =

1
2
ρ(L, v)n−p +

1
2
ρ(−L, v)n−p

for every v ∈ Sn−1. Therefore

1
2

∫
Sn−1

|u · v|−pρ(K, v)n−p dv +
1
2

∫
Sn−1

|u · v|−pρ(K,−v)n−p dv =

1
2

∫
Sn−1

|u · v|−pρ(L, v)n−p dv +
1
2

∫
Sn−1

|u · v|−pρ(L,−v)n−p dv

The invariance properties of the spherical Lebesgue measure show that (41)
holds.
Second, suppose that (41) holds. Thus∫

Sn−1

|u · v|−pρ(K, v)n−p dv =
∫

Sn−1

|u · v|−pρ(L, v)n−p dv, ∀u ∈ Sn−1.

By Fubini’s theorem we conclude∫
Sn−1

ρ(K, v)n−p

∫
Sn−1

|u · v|−pf(u) dudv

=
∫

Sn−1

ρ(L, v)n−p

∫
Sn−1

|u · v|−pf(u) dudv,

for suitable f . The remarks after Theorem 6 show that∫
Sn−1

ρ(K, v)n−pF (v) dv =
∫

Sn−1

ρ(L, v)n−pF (v) dv, for F ∈ C∞e (Sn−1).

An approximation argument proves that Ṽp(K,M) = Ṽp(L,M) for each
centered star body M .
Finally, assume that (43) holds. Define a centered star body M by

ρ(M,u)p :=
∫

Sn−1

|u · v|−pf(v) dv,

where f is now a continuous, non-negative function on the sphere. Applying
(43) for this special M , we get∫

Sn−1

f(v)(ρ(IpK, v)p − ρ(IpL, v)p) dv = 0. (44)

For arbitrary continuous functions f we can deduce (44) by writing f as the
difference of its positive and negative part. Thus ρ(IpK, ·)p = ρ(IpL, ·)p.
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6 Busemann-Petty Type Problems

The Busemann-Petty problem asks whether the implication

IK ⊂ IL =⇒ V (K) ≤ V (L)

holds for arbitrary origin-symmetric K,L ∈ Kn
0 . For 0 < p < 1, the Lp

analogue of this question asks: Does IpK ⊂ IpL for origin-symmetric K,L ∈
Kn

0 imply V (K) ≤ V (L)? We refer to this question as the symmetric Lp

Busemann-Petty problem. This was stated and solved in terms of polar L−p

centroid bodies by Yaskin and Yaskina [40]. Their result shows that the
answer is positive if and only if n ≤ 3. Since IpK ⊂ IpL is equivalent to
I+pK ⊂ I+pL for origin-symmetric bodies K,L, the symmetric Lp Busemann-
Petty problem asks whether

I+pK ⊂ I+pL =⇒ V (K) ≤ V (L) (45)

holds for origin-symmetric bodies K,L ∈ Kn. If we allow the bodies in (45)
to be arbitrary elements of Kn

0 , we call this question the nonsymmetric Lp

Busemann-Petty problem.
To each body K which is not origin-symmetric, one can construct bodies L
such that the desired implications for the original as well as the symmetric
Lp Busemann-Petty problem fail. Our goal is to show that Lutwak’s con-
nections on intersection bodies (which will be described in detail below) also
hold in the nonsymmetric Lp case. This proves in particular that there are
nonsymmetric bodies K for which (45) holds. Therefore we obtain a suffi-
cient condition to compare volumes of bodies which can be nonsymmetric.
Note that (45) is true for centered ellipsoids. This follows from (21) for
E = F . Indeed,

V (I+pE) = rn
I+p
κ2−n/p

n V (E)n/p−1,

which immediately implies that (45) holds for ellipsoids.
Lutwak’s first connection, as established in [25, Theorem 10.1], states that
the answer to the Busemann-Petty problem is affirmative if the body with
smaller sections is an intersection body. The assumption of convexity of the
involved bodies can be omitted in this case; the statement holds true for
star bodies. The Lp analogue of this result is the following

Theorem 11. Let 0 < p < 1 and K,L ∈ Sn
0 . If K is a nonsymmetric Lp

intersection body, i.e. contained in I+p Sn, then

I+p K ⊂ I+p L,

implies
V (K) ≤ V (L),

with equality only if K = L.
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Proof. For a star body K̄ with I+p K̄ = K, the definition of dual Lp mixed
volumes and Fubini’s theorem prove

V (K) = Ṽp(K,K) = Ṽp(K̄, I+p K), Ṽp(L,K) = Ṽp(K̄, I+p L).

Since

Ṽp(K̄, I+p K) =
1
n

∫
Sn−1

ρ(K̄, u)n−p

(
ρ(I+p K,u)
ρ(I+p L, u)

)p

ρ(I+p L, u)
p du

≤ max
u∈Sn−1

(
ρ(I+p K,u)
ρ(I+p L, u)

)p

Ṽp(K̄, I+p L),

we have
V (K)

Ṽp(L,K)
≤ max

u∈Sn−1

(
ρ(I+p K,u)
ρ(I+p L, u)

)p

. (46)

But I+p K ⊂ I+p L, so the claimed inequality for the volumes is an immediate
consequence of (46) and (8). The equality case of the theorem follows from
the equality case of the dual Lp Minkowski inequality.

The next result is a negative counterpart of Theorem 11.

Theorem 12. Suppose we have an infinitely smooth star body L ∈ Sn
0 which

is not a nonsymmetric Lp intersection body. Then there exists a star body
K such that

ρ(I+p K, ·) < ρ(I+p L, ·),

but
V (L) < V (K).

This is the Lp analogue of Lutwak’s second connection [25, Theorem 12.2]
on intersection bodies.

Proof. By Theorem 6 there exists a function f ∈ C∞(Sn−1) such that

ρ(L, ·)p = C+
−pf.

Since L is not a nonsymmetric Lp intersection body, f must assume neg-
ative values. Therefore we are able to choose a nonconstant function f̄ ∈
C∞(Sn−1) such that

f̄(u) ≥ 0, when f(u) < 0,

and
f̄(u) = 0, when f(u) ≥ 0.
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Choose another function f̃ ∈ C∞(Sn−1) such that C+
−pf̃ = f̄ . Now, since

the origin is an interior point of L, we can find a constant λ > 0 with

ρ(L, ·)n−p − λf̃ > 0.

Define a star body Q by ρ(Q, ·)n−p := ρ(L, ·)n−p − λf̃(·). Then

ρ(I+p Q, ·)p = ρ(I+p L, ·)p − λ((n− p)Γ(1− p))−1f̄ .

Hence
ρ(I+p Q, ·)p ≤ ρ(I+p L, ·)p, when f(u) < 0, (47)

and
ρ(I+p Q, ·)p = ρ(I+p L, ·)p, when f(u) ≥ 0. (48)

The linearity properties of dual Lp mixed volumes and the self adjointness
of C+

−p yield

V (L)− Ṽp(Q,L) =
1
n

∫
Sn−1

(
ρ(L, u)n−p − ρ(Q, u)n−p

)
ρ(L, u)p du

=
1
n

∫
Sn−1

(
ρ(L, u)n−p − ρ(Q, u)n−p

)
C+
−pf(u) du

=
(n− p)Γ(1− p)

n

∫
Sn−1

(
ρ(I+p L, u)

p − ρ(I+p Q, u)
p
)
f(u)du

< 0.

So from (8) we get
V (L) < V (Q).

Relations (47) and (48) show that I+p Q ⊂ I+p L. Set

ε :=
(

1
2

(
1 +

V (L)
V (Q)

))1/n

.

Then ε < 1 and the body K := εQ has the desired properties.
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